THE HORN: Stopped, Muted, and Open

Christopher Earnest

1. Why Another Article on Stopping?

Many articles and even books which discuss stopping of the horn have
stressed the fact that a stopped note can be derived smoothly from above, by
gradually closing the hand. While true, this has led many authors to what | believe to
be an incorrect explanation of the effects. Examples are the book by John Backus (2)
and the article (8} by B. Lee Roberts in the May 1976 Horn Call. The latter references
the Schrodinger equation to awe the uninitiated, but it rests essentially on the one
basic piece of evidence.

Other evidence appears in the article (1) by Dr. Aebi in the same issue of the
Horn Call. His graphs of the actual standing waves clearly show what happens, if
interpreted correctly. Dr. Aebi does mention the derivation from above, but
correctly numbers the harmonics to show that this method changes the harmonic.
Another piece of evidence is that a stopped note can also be derived smoothly from
below, using a procedure described by Birchard Coar (5) The whole bell is covered by
a pad at the rim (which doesn’t change the pitch), then the pad is gradually moved in
to the full stopped position. The farther in the pad is moved, the higher the pitch
goes.

The smoothness of derivation, then, doesn’t get us very far. It can be used to
show that stopping lowers the pitch, or that it raises it. Clearly, though, the final
form of the standing wave must be the same no matter which route one takes to get
there. Any complete explanation must show how both derivations work, and how
they lead to the same final result. The correct explanation, as I will show, is that
stopping makes the horn function as a pipe closed at the bell end (also), and shortens
it, as many authors have claimed.

| hope the reader will forgive one more article on stopping. The discussion is
beginning to take on something of an angels-on-the-point-of-a-pin flavor. However,
there is some danger that players will be misled into trying to use inappropriate
fingerings for stopped notes, especially the higher ones, based on a misconception of
the physics. Moreover, a correct explanation may conceivably help improve
techniques of both open and stopped horn playing. | admit also that search for the
correct explanation interests me in itself. Anyway, an issue of the Horn Call wouldn’t
be complete without at least one article on stopping. Let’s keep at it until we get it
right!

2. The Basic Physics
It seems best to start with a brief review of the basic physics of sound waves and

standing waves. A sound wave travels through the air (or other medium) by
longitudinal propagation. The crest is a region of compressed air, in which the
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molecules are moving chiefly in a certain direction. They bump into the molecules in
front, stopping their own motion, but conveying the forward motion to the adjacent
molecules. This is rather like a rear end collison. The compressed region moves
forward, as the moving molecules are pushed into those further forward. The wave
action is not a wind—only the wave moves, while the molecules move only back and
forth. (The blowing of a horn serves only to make the lips vibrate; the blown stream
of air moves much slower than the sound wave, and has nothing directly to do with
it). As the compressed region moves forward, the momentum of the molecules
creates a rarefied region behind it—the wave trough.

A standing wave, as in a pipe or horn, results from sound waves moving
simultaneously in both directions. When two crests collide, they bounce off each
other, each giving its energy to the other, so the wave motion goes further in each
direction. This works much like the toy with balls hanging next to each other on
threads. !f one raises, say, two balls at each end, then lets them go simultaneously,
each pair will hit the balls in the center and will knock back the two balls at the
opposite end. In a standing wave, the crests of opposing waves always meet at the
same points, called nodes. At a node, the displacement of the air molecules is zero,
just as for the balls in the center of the toy, but the pressure change—called the
sound pressure—is at a maximum. The air pressure is highest when the two crests
meet; as they recede, it drops to a minimum as the two troughs meet. The energy in
the two waves need not be the same, just as, in the toy, releasing two balls on one
end and three on the other will drive out three and two balls, respectively, on op-
posite ends.

Between any two adjacent nodes, there is an anti-node. Here the crest of one
wave always meets the trough of the wave going the other way. At an anti-node, the
air pressure changes the least, but the displacement of the air molecules is greatest.
They rush first in one direction, then the other (the total displacement is very small,
however). The sound pressure at an anti-node, while at a minimum, is zero only if
the opposing waves have equal energy. The area between two adjacent nodes is
called a pressure loop.

The principles of a standing wave can be illustrated by balls rolling on a track.
One full cycle looks like:
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Nodes are shown by solid vertical lines, anti-nodes by dotted lines. The graph at the
bottom shows the density (pressure) change at each point. At the start of the cycle,
enough force is applied at each end to drive loose 3 balls—b, c, d, and j, k, |. Each
group of three hits the next stationary group, driving three balls out the other end.

For example, b, ¢, and d hite and f, driving d, e, and f on and leaving b and c behind.

When d, e, fand b, i, j hit g from opposite directions, each group transmits its energy
to the other, driving it back again. This presumably rattles g’s eyeteeth a bit, but it
doesn’t move. The other half of the cycle is just the same in reverse; when b, ¢, d and
j, k, { hit a and m respectively, the cycle will repeat if a and m are anchored in place
or if the outside force is again applied at each end.

Observe that the balls at the nodes (a, g, and m) don’t move. Those in the
vicinity of the anti-nodes (d and j) move farther than any others. When the crests are
meeting at a node, the two troughs are always just meeting at the adjacent nodes on
both sides, and two crests again at the nodes adjacent to those (if there are that many
nodes).

3. Open and Closed Pipes

Normally a standing wave arisas when a wave is reflected back in some way. For
example, in a pipe with closed ends, each wave crest bounces off the end, and is
reflected back as a crest. If the wave length is just right for the length of the pipe,
reflection occurs at both ends, setting up the standing wave, or in other words,
causing the air column in the pipe to resonate. The reflection points are at nodes of
the standing wave.

The open end of a pipe can also reflect back a wave, but differently. At this
point, the pressure of a wave trough is normally below atmospheric pressure, so as
the trough reaches the end, air molecules from outside are pushed by atmospheric
pressure back into the rarefied region. A trough reflects back as a crest and vice
versa. The pressure does not change, but air molecules rush rapidly in and out. The
reflection occurs at an anti-node of the standing wave. A reflection from an open
end has less energy than the outgoing wave. Energy not reflected back is radiated
into the atmosphere, creating an audibie sound wave. If the standing wave is to be
maintained, the lost energy must be replaced by pulses at the proper times. In a brass
instrument, the vibrating lips do this.

A standing wave can have multiple préssure loops, so that there is more than one
mode of resonance in a pipe. The modes for a pipe closed at both ends are:
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and so on. (As will be seen, it is not a coincidence that this resembles Dr. Aebi’s Fig.
1 for muted or stopped horn). The pipe contains 1, 2, 3, 4, etc. pressure loops. Most
readers are probably aware that this gives natural resonance frequencies, or har-
monics, of 1, 2, 3, 4, etc. times the fundamental frequency. A little algebra pins it
down: For a cylindrical pipe, the length of one pressure loop is the length of the pipe
divided by the number of loops: p equals L/n. The wave length is twice the length of
one pressure loop, because the crest must traverse the loop in both directions for a
full cycle: W equals 2p, or substituting, W equals ¢/W, or again substituting and
rewriting, f equals n (c/2L). Hence the harmonic frequencies for a cylindrical pipe
closed at both ends are (c/2L), 2{c/2L), 3(c/2L), 4(c/2L), etc.

A pipe open at both ends has the same harmonics, but the pressure loops are
offset by half a loop. The ends are at anti-nodes:
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The resonance modes for a cylindrical pipe closed at one end and open at the
other are:

[ —— f = n{c/2)

f1 = Y(c/2L) = c/4L
L~ —

fa = 1%(c/2L) = 3c/4L
=

f3 = 2%(c/2L) = 5c/4L
e N . fg4 = 3%{c/2L) = 7c/4L

and so. (Again, note that this looks rather like Dr. Aebi’s Fig. 1 for open horn). Here
the pipe contains V2, 12, 2%, 34, etc. pressure loops, giving harmonics which are
1, 3, 5, 7 times the fundamental. The algebra is shown above. Because this kind of
pipe contains only half a pressure loop for the fundamental, its fundamental is an
octave lower than that of a pipe of the same length closed at both ends or open at
both ends.

4. More Complicated Reflections
The horn is basically a pipe closed at the mouthpiece end by the player’s lips and

open at the other (if not muted or stopped). How then does it produce harmonics at
.multiples of approximately 2, 3, 4, etc. times the pedal tone frequency, rather than 3,
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5,7, etc.? The answer is the shape: for a tapered pipe, there are additional ways in
which reflection can occur.

A wave crest is not a single thin sheet of compressed air. In a cylindrical pipe,
the pressure gradually rises from trough to crest and drops off again until the next
trough—the crest can be thought of as an entire region, half a wave length long, with
pressure gradually mounting, then falling again within it.

Now consider a cone, complete to the point. As a wave crest approaches the
point, its pressure must rise because of the decrease in the size of the pipe. As the
forward part of the crest squeezes into the point, its pressure rises more rapidly than
that of the crest peak, which is also being squeezed, but is always in a larger section
of the pipe. By the time the peak of the crest is half a pressure loop away from the
point, the pressure all the way forward to the point is the same. The crest therefore,
bounces off itself, as it were, at what amounts to a closed end—closed by the
pressure of the forward part of the crest. The point of effective closure is at different
places for different frequencies. As it works out, the harmonic frequencies and the
positions of the standing wave nodes are the same as those of a cylindrical pipe of the
same length open at both ends. The point of the cone doesn’t act like an open end,
but it does in effect close the pipe off at different points for different frequencies.

For a pipe which flares rapidly enough at the open end, like a horn, a similar but
inverted effect occurs as a crest approaches the open end. At an open end, a crest
normally “runs interference” for the following trough. The atmospheric pressure
outside cannot rush in to fill in the trough (creating a reflection) until the crest, which
is at higher pressure, leaves the pipe. However, as a wave moves into the flare, the
pressure drops as it expands to fill the extra space. If the flare is rapid enough, the
pressure of the crest drops so much that it can no longer protect the following trough.

The atmospheric pressure rushes in to fill the trough while the trough is still well
inside the pipe, and the standing wave reflection starts back from that point. The rest
of the pipe has no effect on that particular standing wave (although it does affect any
overtones). Just as for the small end of a cone, the effective end of the pipe occurs at
different points for different frequencies—farther in for lower ones. Essentially, the
governing factor is the growth in the size of the pipe between the trough and the
preceding crest. In a steadily flaring pipe, this growth is greater over a longer
distance—that is, for longer wave lengths. ’

If the bell flares at the correct rate, the harmonic frequencies and the positions
of the standing wave anti-nodes are very close to those of a cylinder of the same
length closed at both ends. For the bell, though, the last node is missing; the last
anti-node determines the effective end of the pipe. The amount of energy radiated
into the atmosphere depends on the size of the radiating area, and so is less for jower
frequency notes, because they radiate from well inside the horn. The effective end of
the pipe for the 2nd, 3rd, 4th, etc. harmonics is approximately 3/4, 5/6, 7/8, etc. of
the way down the horn. In other words, one could chop off approximately the last
quarter of the horn and still play the 2nd harmonic at the same pitch! The horn
behaves very much like a sequence of cylindrical pipes of different lengths and
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different bell areas tor different frequencies:
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This is somewhat oversimplified. Rapid growth in the bore size in any part
of the horn also increases the wave length and the speed of sound in that region. The
effect is minor, however. The most important effect of the bell flare is that it gives
close to the proper harmonic series, except for the fundamental. (The flare starts
after the halfway point, so the fundamental is quite low, as others have noted. There
exists a usable pedal tone at the desired frequency, because of the resonance of the
overtones).

5. The Muted Horn

Muting the horn closes the end. There is some leakage around the mute
(otherwise no sound would be heard), but the waves of all frequencies now travel all
the way to the end of the mute, whence they are reflected back at a node. The open
and muted horns produce the same frequencies, but in a different manner. This is no
accident—the shape of the bell flare is designed to give the open horn the same
harmonics as a pipe closed at both ends. Insertion of the mute simply adds on half a
pressure loop in the region that was effectively cut off by the bell flare, changing the
shape of the air column only at the very end. The harmonic number does not
change—for a given harmonic number, a closed pipe always has half a pressure loop
more than a pipe open at the end, as the earlier illustrations showed. Because the
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mute reduces the rate of expansion and the area of radiation, the wave crests can now
successfully protect the following troughs all the way to the end even for the lower
frequencies.

Most of this is clearly shown by Dr. Aebi’s diagrams, except for the last anti-node
reflection point for the open horn. The sound pressure continues to drop alil the way
to the end of the horn; the last part is apparently due to overtones. Note that
whatever the differences in wave lengths inside the horn, the time between wave
crests is the same at every point. Hence it doesn’t matter that with a non-transposing
mute, the radiation into the room occurs before the final reflection point. The wave
crests are like punctual trolley cars; they come every so often whether one is at the
end of the line or not.

This also explains why higher notes are more secure muted than open. The area
of radiation is much smaller with the mute in, so more of the energy reflects back to
reinforce the vibration of the lips.

Even with the horn open, proper placement of the hand makes higher notes more
secure by reducing the radiation and increasing the reflection. This is not to say that
the wave bounces off the hand when the horn is open, only that the area of radiation
is reduced. Closing the hand more gives a darker and finally a muffled sound because
it cuts down the radiation of higher frequency overtones. The lower ones are still
radiated from well inside the horn, until the hand is closed quite far.

6. The Stopped Horn

This brings us finally back to hand stopping. The physics of the derivation from
below should now be clear. A pad over the end of the bell has the same effect as a
non-transposing mute: the horn is now closed at both ends, but the pitch doesn’t
change. As the pad is gradually moved in, the horn is shortened, raising the pitch.

The derivation from above is more complex because the harmonic changes. For a low
note, partial closure of the hand reduces the area of radiation, making the horn more like,
a cylinder. The last (anti-node) reflection point moves out to the heel of the hand,
lowering the pitch. Once the reflection point is at the heel of the hand, for any note,
further closure increases the rate of expansion just at that point, slowing down the wave.
That is, the wave takes longer to pass in and out because of the increase in acoustic mass.
It can’t go as far between pulses, so the last half of the last pressure loop gets shorter and
the last node moves farther out, lengthening the inner pressure loops and lowering the
pitch (the speed inside the horn doesn’t change). Finally the last node moves so far out it
reaches the hand. At that instant, the horn begins to behave like a closed pipe for that
frequency and all higher ones—the reflection is now from the hand at a node, not the
atmosphere at an anti-node. The relative harmonic of the stopped note changes, because
the last half of the pressure loop has been pinched off. The n-1st harmonic of a closed
pipe always has V4 pressure loop less than the nth harmonic of an open-ended pipe. Once
this happens, the pitch goes down no farther; the node reflection point remains right at
the hand, no matter how much farther it is closed. This is why the flattening stops at
about V4 step above the next lower harmonic—a fact not explained by the pure lowering
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theory. One is in factplaying the next lower harmonic, a half-step higher because the
hand shortens the horn.

The hand actually shortens the horn by only 5 or 6 inches, as compared with
the non-transposing mute. The second valve for an F horn, though, adds more than 8
inches of pipe. The difference is apparently due to the fact that stopping cuts off
more volume and therefore, more acoustic mass from the air column; the volume is
more pertinent than the length.

This can all be checked by experiment, and the pinching off of half a pressure
loop is very clearly shown by Dr. Aebi’s diagrams. Apparently no one has noticed
that the harmonics are brought into closed mode one by one, starting at the top—
perhaps because for the middle and high notes, it happens while the hand is still
somewhat open, before the sound takes on a real stopped quality. For instance,
when starting with the 6th harmonic (middie C, concert) there comes a point when
the played frequency is still in a ratio of 6/5 with the next lower harmonic, but 5/6
with the next upper one! (It is harder to check harmonic ratios going upward, but it
can be done by counting how many it takes to make a fifth, for example). The note is
functioning as the 6th harmonic with respect to the still open ones below, but as the
5th harmonic in the closed series above. This explains why low notes are so hard to
stop—the last node has to be pulied out one heck of a long way before it reaches the
hand; to start with, even the last anti-node is well inside the horn. It takes a lot of
closing to stop a low note.

This explanation also shows what would happen to the fundamental if it could be
played and stopped—the pure lowering theory would seem to require that it be
lowered to zero Hertz, or perhaps a half step above that (?!) In fact, both the first and
second harmonics would end up at the same pitch—a half step higher than the pedal
tone (a major seventh below the original second harmonic). The original fun-
damental has no pressure node to be pulled out, so the closure of the hand must
create a new one. The second harmonic does have a pressure node which is pulled
out as far as the hand. This should make it crystal clear that reaching the stopped
mode from above changes the harmonic for all except the fundamental—the 1st and
2nd harmonics end up the same. | have tried this on a very short horn | have, closing
it off at the very end, and the effect is as described—the first harmonic doesn’t move
(on this particular horn, the flare starts quite early, so the first harmonic is true), but
the second is lowered an octave to join the first.

7. Some of the Math

Some of the above effects are described quantitatively by the so-called Webster
horn equation, actually first derived in the 18th century by Daniel Bernoulli, Euler,
and Lagrange. | have explained as much as | could without using the equation, to
make the effects clear to the non-mathematical reader, and to avoid traps of
reasoning. Functions do not reflect waves—the atmosphere, hands, and mutes do.
Moreover, the Webster equation does not describe the physics exactly {7}, and the
simplified form | will use here assumes an increasing radius throughout the horn. |
will use the Schrodinger form as presented by. Benade (3.4) : a similar form was
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derived at least as early as 1945 by Salmon (7). The equation gives the wave length as
a function of the horn profile:

C

‘_sz - U (c/2 )2

Where: z is the wave length
¢ is the velocity of sound at that point (it varies somewhat throughout the
horn}

f is the frequency

U is the so-called horn function, defined as

U = r"/r, Where
r is the radius of the tube at that point
r” is the second derivative of r with respect to length; it is the
acceleration in the change in size of r. Benade points out that r”
is approximately equal to 1/R, where R is the external radius of
the bell flare at the given point.

As the value of U increases, the wave length becomes larger, and the speed
of sound increases for a given frequency. If U becomes large enough relative to the
frequency, the wave length becomes imaginary —that s,

c/v «.

Physically, this means that the wave becomes attenuated—that the standing wave
cannot be maintained past the point where U gets larger than

2 Mt/c)2, For the open horn, this is the chief effect of the bell flare;
U does increase as the bell gets larger until just before the end (where the rate of
change decreases). Thus a low frequency standing wave must end well before the
end of the horn, as discussed earlier. Note that the cutoff occurs only if the bell
actually flares; for a cone, U is zero throughout. For the cutoff point to vary with the
frequency, the flare must be more rapid than exponential.

According to Pyle (7), the profile of a medium bore horn bell is quite closely
described by the function:

r = 88.6894/(x + 5.8157)
where x is the distance in from the end of the bell (the bell opens to the left on the
graph). All dimensions are in centimeters. With these particular constants and a bell

length of 142 cm, the bell rim diameter is 30.5cm and the diameter at the start of the
bell is 1.2 cm. Differentiation gives the horn function (r”/r) for this profile:

U= 2/(x + 5.8157)2

(With this particular profile, U increases all the way to the bell rim. With an actual
bell, it normally peaks just before the end. This affects only the highest frequencies,
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and only slightly). For each frequency, there is a value of x at which the denominator
of the horn equation becomes imaginary. The total length of the horn minus this
value is the effective length of the horn for that frequency. Assuming a speed of
sound (c) of 34400 cm per second, and an actual horn length (L) of 374.7 cm (from
Dr. Aebi’s article), the horn equation and the horn function for this bell go together to
give the effective length (EL) for each frequency (f):

EL = L- (V2T - 58157

374.7 - (7742.72/f - 5.8157)

I

Based on this, the following table gives the effective lengths for some of the har-
monics of an F horn with this bell. The table also gives the amount effectively cut off
by the flare of the bell, the effective muted horn length, and the effective frequency.
The last two assume the horn behaves like a closed cylinder with the given effective
length. The muted horn length is obtained by adding on half a pressure loop to the
effective open length; that is, by multiplying the latter by 2n/ (2n-1), for the nth
harmonic:

Amount Effective Effective
Cut Open Horn Muted Horn  Effective

Harmonic Frequency Off Length Length Frequency
1(F) 44 142* 232.7 465.4 36.96
2 (F) 88 82.17 292.53 390.04 88.19
3(C) 132 52.84 321.86 386.23 133.60
4(F) 176 38.18 336.52 384.60 178.89
5 (A) 220 29.38 345.32 383.69 224,14
6 (C) 264 23.51 351.19 383.11 269.37
7 (Eb) 308 19.32 355.38 382.71 314.60
8(F) 352 16.18 358.52 382.42 359.82
16 (F) 704 5.18 369.52 381.44 721.42

*Bell Length

The table does not show the effects of the hand, the mouthpiece and lead pipe,
and the small changes in wave length within the horn. These would all conspire to
bring the effective frequencies to just what they should be. The bell alone brings
them quite close.

Interestingly enough, if an “ideal” bell could be designed for the F horn, in terms

of intonation, it would also be “ideal” in this sense for the Bp horn (assuming all
intonation correction is made by the bell flare). The following table shows the
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behavior of our same bell for the Bp horn, assuming an actual horn length of 28% cm
(¥% the F horn length): ‘

Amount Effective  Effective
Cut Open Horn Muted Horn  Effective

Harmonic Frequency Off Length Length Frequency
1 (Bb) 58% 126.16 154.84 309.68 55.54
2 (Bb) 1179 60.17 220.83 294 44 116.83
3(F) 176 38.18 242.82 291.39 177.08
4 (Bb) 234%Y, 27.18 253.82 290.08 237.18
5(D) 293"% 20.58 260.42 289.36 297.21
6(F) 352 16.18 264.82 288.89 357.23
7 Ab) 410 13.04 267.96 288.57 417.23
8 (Bb) 469V, 10.68 270.32 288.34 477.21

12 (F) 704 5.18 275.82 287.81 717.13

For the Bp horn, the bell comprises more than half the horn, and the fun-
'damental is only about a half step flat. For the F horn, it was a minor third
low.

As poted, the form -of the ‘horn equation given here is not necessarily pertinent
for pipes which flare, then shrink again— for example, the muted or stopped horn.
The horn function does have a very large negative peak at any point where the radius
suddenly starts to become smaller (this fact was missed by Mr. Roberts). This would
give a wave length of zero at such a point, using the horn equation. !n any case, it is
clear that the standing wave reflection comes back at a node from such a point.
Immediate or full closure is not necessary; for example, the stopping mute creates an
effective closed end just where it starts to decrease in size.

8. Summary

The surprising thing about the horn is not its behavior when muted or stopped,
but the way it works when open. Most players believe it acts like a cone of the same
length, giving it the proper harmonic series. In fact, it behaves quite differently. ina
cone, the small end acts to create a sort of wall of air which reflects back the sound
wave at a node of the standing wave. The air wall acts like a closed end, which is
farther from the point for lower frequencies. A fiaring bell, though, effectively brings
the open end into the horn—farther in for lower frequencies. The full length of the
horn is used only for high notes, not low ones!

With a properly designed bell, the harmonic frequencies and the positions
of the anti-nodes are very close to those obtained by closing the bell at the rim. Such
closure adds on half a pressure loop, and since for a given harmonic, a pipe closed at
both ends always has half a loop more than a pipe open at one end, the harmonic
doesn’t change. The prafile of the bell flare is crucial for in-tune harmonics—the
series by no means springs with Pythagorean exactness from the simple length of the
pipe, as it does for a cylinder or a cone.
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Muting or stopping, then, makes the horn function as a pipe closed at both ends.

The sound leaks out through the cracks, but this has no essential effect on the
standing wave. Clearly a shorter closed pipe has higher resonance frequencies than a
longer one, so stopping does raise the pitch as long as the harmonic remains the
same. The further in the stopper is put, the higher is the pitch, as one would expect.

Smooth derivation of a stopped note from above is possible, but the physics of
the process is not so simple. (Actually, for me it’s not even simple to keep the
derivation smooth, for the lower notes). What happens is that as the hand is partly
closed, the wave crest must expand and contract more rapidly, so it can’t go as far in
a given time. The last node must move further out, to aliow the reflection to get back
in time—this in turn lengthens all the pressure loops inside the horn, lowering the
pitch. (This much is apparently generally accepted). The last half of the last pressure
loop gets shorter and shorter, until finally the node itself reaches the heel of the
hand. At that point, the horn starts behaving like a pipe closed at the bell end, and
the wave reflection is from the hand at a node. Dr. Aebi’s diagrams show this clearly.
The closed pipe has ¥ a pressure loop less than the open pipe did, but for the same
harmonic it should have % a pressure loop more. Therefore, the harmonic number is
one less than it was, except for the fundamental. The smoothness of the change
should not be surprising—as | pointed out in my letter to the Autumn 1973 Horn Call,
smooth changes from one harmonic to a different one occur in many different cir-
cumstances in horn playing.

| see no reason why it is better to practice deriving stopped notes from above
rather than below, although there is nothing wrong with such practice. Personally, |
find it easier to hear the intonation and to get a good stopped hand position by
starting from below, and closing the hand fairly rapidly.

It does seem that the importance of a proper hand position for the open horn
may not be stressed enough. The hand is an essential part of the instrument for notes
in the highest octave, and is not put into the bell just out of tradition or only to
control tone quality. Without the hand, instrument makers would have to keep the
bell throat narrower longer. Pyle (7) reports that, using laboratory equipment to
create sound waves in a good horn without the hand in the bell, there were essentially
no resonance peaks above the high Eb (concert pitch); Benade has also noted that
resonance peaks in the last octave are quite weak. The relative treacherousness of
the horn in the highest octave is due not only to the cioseness of harmonics, but also
to the weakness of the reflected wave. Use of the BD horn helps the first, but it takes
a different bell shape to help the second. The hand does reshape the bell, and helps
the lips maintain the desired frequency. This also explains why it is harder to play
softly in the high register—most of the energy radiates into the atmosphere.
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